Vector Databases
Vector Databases
Chroma DB
ChromaDB(host, port, collection, ef_inputs)
Initializes a Chroma vector database connection. Required for tests on RAG workflows.
Method Parameters
host | required string
Host connection for vector database.
port | required int
Port for vector database connection.
collection | required string
Vector database collection name
ef_inputs | required object
Embedding function to be used for vector database.
HuggingFace
api_key | required string
HuggingFace Hub API key to access embedding function.
model_name | required string
HuggingFace Hub embedding function model name.
OpenAI
api_key | required string
OpenAI API key to access embedding function.
model_name | required string
OpenAI embedding function model name.
Azure OpenAI
api_key | required string
Azure OpenAI API key to access embedding function.
model_name | required string
Azure OpenAI embedding function model name.
api_base | required string
Azure OpenAI API base endpoint.
api_version | required string
Azure OpenAI API endpoint version.
Sentence Transformer
model_name | required string
Sentence Transformer embedding function model name.
Returns
ChromaDB object.
Example
chroma_args = {
"host": "chroma-service.chroma.svc.cluster.local",
"port": 8000,
"collection": "my_collection",
"ef_inputs": {
"ef_type": "sentence_transformer",
"model_name": "my_embedding_function",
},
}
chroma_connection = ChromaDB(**chroma_args)
LlamaIndex DB
LlamaIndexDB(aws_key, aws_secret_key, s3_bucket_name, ef_inputs)
Initializes a LlamaIndex vector index connection. Required for tests on RAG workflows.
Method Parameters
aws_key | required string
AWS S3 access key for the persistent directory
aws_secret_key | required int
AWS S3 secret access key for the persistent directory
s3_bucket_name | required string
AWS S3 bucket name for the persistent directory
ef_inputs | required object
Embedding function to be used for vector database.
HuggingFace
api_key | required string
HuggingFace Hub API key to access embedding function.
model_name | required string
HuggingFace Hub embedding function model name.
OpenAI
api_key | required string
OpenAI API key to access embedding function.
model_name | required string
OpenAI embedding function model name.
Azure OpenAI
api_key | required string
Azure OpenAI API key to access embedding function.
model_name | required string
Azure OpenAI embedding function model name.
api_base | required string
Azure OpenAI API base endpoint.
api_version | required string
Azure OpenAI API endpoint version.
Sentence Transformer
model_name | required string
Sentence Transformer embedding function model name.
Returns
LlamaIndexDB object.
Example
llamaindex_arg = {
"aws_key": AWS_KEY, # aws s3 access key
"aws_secret": AWS_SECRET_KEY, # aws s3 secret access key
"s3_bucket_name": "llamaindex-test", # aws s3 bucket name
"ef_inputs": {
"ef_type": "hf", # embedding function provider
"model_name": "all-MiniLM-L6-v2", # embedding function model name
"api_key": HF_AUTH_TOKEN, # credential needed to access the model
},
}
llamaindex_connection = LlamaIndexDB(**llamaindex_args)
CustomRag DB
CustomRagDB(custom_rag_application_id)
Initializes a CustomRagDB connection. Required for tests on RAG workflows.
Method Parameters
custom_rag_application_id | required int
Custom RAG application id
Returns
CustomRagDB object.
Example
custom_rag_arg = {
"custom_rag_application_id": 12 # id of custom-rag-application
}
custom_rag_connection = CustomRagDB(**custom_rag_arg)