AI Systems
Cloud Remote AI System Creation
Note: For remote cloud providers, first create auth-data entries (API keys) using the User Auth methods. Then provide auth_data_ids and a primary_auth_data_id to AI system creation. Do not pass plaintext API keys directly to model creation; the server resolves keys from your auth-data.
Create OpenAI AI System
create_openai_model(name, api_instance, auth_data_ids, primary_auth_data_id, key?)
Creates a new remote openai model object. The model object can then be used for running evaluations and tests.
Method Parameters
name | required string
Model name.
api_instance | required string
Model identifier name from OpenAI.
Example: "gpt3.5-turbo-0125"
auth_data_ids | required List[int]
List of auth-data ids to attach to this model.
primary_auth_data_id | required int
Auth-data id to use as primary for this model.
key | optional string
Unique model identifier key. Will be autogenerated if not provided.
Returns
RemoteModel object.
Example
model = dfl.create_openai_model(
name="GPT 3.5 Model",
api_instance="gpt-3.5-turbo-0125",
auth_data_ids=[101, 102],
primary_auth_data_id=101,
)
Create Azure AI System
create_azure_model(name, api_instance, model_endpoint, auth_data_ids, primary_auth_data_id, api_version?, key?)
Creates a new remote Azure OpenAI model object. The model object can then be used for running evaluations and tests.
Method Parameters
name | required string
Model name.
api_instance | required string
Model identifier name from Azure OpenAI.
Example: "gpt35-turbo"
model_endpoint | required string
URL string representing model endpoint.
Example: "https://abc-azure-openai.openai.azure.com/"
auth_data_ids | required List[int]
List of auth-data ids to attach to this model.
primary_auth_data_id | required int
Auth-data id to use as primary for this model.
api_version | optional string
Azure OpenAI version to use.
Example: "2023-07-01-preview"
key | optional string
Unique model identifier key. Will be autogenerated if not provided.
Returns
RemoteModel object.
Example
model = dfl.create_azure_model(
name="GPT 3.5 Model",
api_instance="gpt35-turbo",
model_endpoint="https://abc-azure-openai.openai.azure.com/",
auth_data_ids=[201, 202],
primary_auth_data_id=201,
api_version="2023-07-01-preview",
)
Create Databricks AI System
create_databricks_model(name, model_endpoint, auth_data_ids, primary_auth_data_id, key?)
Creates a new remote Azure OpenAI model object. The model object can then be used for running evaluations and tests.
Method Parameters
name | required string
Model name.
model_endpoint | required string
Databricks model endpoint.
Example: "<host>/serving-endpoints/<some-model-name>/invocations"
auth_data_ids | required List[int]
List of auth-data ids to attach to this model.
primary_auth_data_id | required int
Auth-data id to use as primary for this model.
key | optional string
Unique model identifier key. Will be autogenerated if not provided.
Returns
RemoteModel object.
Example
model = dfl.create_databricks_model(
name="Databricks Mixtral",
model_endpoint="<host>/serving-endpoints/<mixtral-model-name>/invocations",
auth_data_ids=[301],
primary_auth_data_id=301,
)
Create Anthropic AI System
create_anthropic_model(name, api_instance, auth_data_ids, primary_auth_data_id, key?)
Creates a new remote Anthropic model object. The model object can then be used for running evaluations and tests.
Method Parameters
name | required string
Model name.
api_instance | required string
Model identifier name from Anthropic.
Example: "claude-3-sonnet-20240229"
auth_data_ids | required List[int]
List of auth-data ids to attach to this model.
primary_auth_data_id | required int
Auth-data id to use as primary for this model.
key | optional string
Unique model identifier key. Will be autogenerated if not provided.
Returns
RemoteModel object.
Example
model = dfl.create_anthropic_model(
name="Claude 3 Sonnet",
api_instance="claude-3-sonnet-20240229",
auth_data_ids=[401, 402],
primary_auth_data_id=401,
)
Create Mistral AI System
create_mistral_model(name, api_instance, auth_data_ids, primary_auth_data_id, key?)
Creates a new remote Mistral model object. The model object can then be used for running evaluations and tests.
Method Parameters
name | required string
Model name.
api_instance | required string
Model identifier name from Mistral.
Example: "mistral-large-latest"
auth_data_ids | required List[int]
List of auth-data ids to attach to this model.
primary_auth_data_id | required int
Auth-data id to use as primary for this model.
key | optional string
Unique model identifier key. Will be autogenerated if not provided.
Returns
RemoteModel object.
Example
model = dfl.create_mistral_model(
name="Mistral Large",
api_instance="mistral-large-latest",
auth_data_ids=[501],
primary_auth_data_id=501,
)
Custom Remote AI System Creation
Create Custom AI System
create_custom_model(name, remote_model_endpoint, remote_api_auth_config, request_transformation_expression?, response_transformation_expression?, response_type?, batch_size?, multi_turn_support?, enable_retry?, key?)
Creates a new custom remote model object. The model object can then be used for running evaluations and tests.
Method Parameters
name | required string
Model name.
remote_model_endpoint | required string
Endpoint URL for the remote model.
remote_api_auth_config | required dict
Authentication configuration for the remote API.
request_transformation_expression | optional string
Expression to transform the outbound request payload to the remote model.
response_transformation_expression | optional string
Expression to transform the inbound response payload from the remote model.
response_type | optional string
Response type returned after transformation. Defaults to "string".
batch_size | optional int
Batch size for requests. Defaults to 1.
multi_turn_support | optional boolean
Indicates if multi‑turn interactions are supported. Defaults to True.
enable_retry | optional boolean
Enable client‑side retry for failed requests. Defaults to False.
key | optional string
Unique model identifier key. Will be autogenerated if not provided.
Returns
RemoteModel object.
Example
model = dfl.create_custom_model(
name="My Custom Model",
remote_model_endpoint="https://my-remote-llm/api/infer",
remote_api_auth_config={"type": "bearer", "token": "***"},
request_transformation_expression="payload = {'inputs': input_text}",
response_transformation_expression="return response_json['output']",
response_type="string",
batch_size=1,
multi_turn_support=True,
enable_retry=False,
)
AI Systems - Helpers
Get Model
get_model(key)
Returns model object based on identifier key.
Method Parameters
key | required string
Unique model identifier key.
Returns
LocalModel or RemoteModel object.
Example
model = dfl.get_model('unique_identifier_key')