User Auth Data
User Auth Data Management
Manage API key configurations (auth-data) and their associations to AI systems. These methods let you create, view, edit, delete, and map auth-data to specific AI systems.
Create Cloud Auth Data
create_cloud_auth_data(name, provider_type, api_key)
Creates a new REMOTE_CLOUD auth-data configuration with a single API key. The server validates and encrypts the key.
Method Parameters
name | required string
Display name for this auth configuration.
provider_type | required ProviderTypeEnum
Cloud provider. Examples: "openai", "azure", "anthropic", "mistral", "togetherai", "lambdalabs", "databricks", "bedrock", "gemini".
api_key | required string
Plaintext API key. Stored encrypted server‑side.
Returns
UserAuthDataRecordEntity
Example
from dynamofl.entities import ProviderTypeEnum
record = dfl.create_cloud_auth_data(
name="Primary OpenAI",
provider_type=ProviderTypeEnum.OPENAI,
api_key="sk-***",
)
Get User Auth Data + Associations
get_user_auth_data_and_associations(auth_type?, provider_type?)
Returns the user's auth-data grouped by provider along with the AI system mappings for each entry.
Method Parameters
auth_type | optional AuthDataAuthTypeEnum
Filter by auth type. Examples: "REMOTE_CLOUD", "REMOTE_CUSTOM".
provider_type | optional ProviderTypeEnum
Filter by provider. Examples: "openai", "azure", "anthropic" …
Returns
GetUserLevelAuthDataAndModelAssociationEntity
Example
from dynamofl.entities import AuthDataAuthTypeEnum, ProviderTypeEnum
listing = dfl.get_user_auth_data_and_associations(
auth_type=AuthDataAuthTypeEnum.REMOTE_CLOUD,
provider_type=ProviderTypeEnum.OPENAI,
)
Get Auth Data (by ID)
get_auth_data(auth_id)
Fetch a single auth-data row and its AI system mappings for the user.
Method Parameters
auth_id | required int
The auth-data id to fetch.
Returns
GetAuthDataByIdEntity
Example
details = dfl.get_auth_data(auth_id=123)
Edit Auth Data
edit_auth_data(auth_id, name?, api_key?)
Edit the display name and/or API key on a REMOTE_CLOUD auth-data configuration.
Method Parameters
auth_id | required int
The auth-data id to edit.
name | optional string
New display name.
api_key | optional string
New plaintext API key (will be validated and encrypted).
Returns
UserAuthDataRecordEntity
Example
updated = dfl.edit_auth_data(
auth_id=123,
name="Prod OpenAI Key",
api_key="sk-***",
)
Delete Auth Data
delete_auth_data(auth_id)
Delete a user's auth-data row by id.
Method Parameters
auth_id | required int
The auth-data id to delete.
Returns
DeleteAuthDataResponseEntity
Example
resp = dfl.delete_auth_data(auth_id=123)
Update AI System Mappings
update_auth_mappings_on_auth_data(auth_id, ai_systems_to_add?, ai_systems_to_remove?)
Associate or remove AI system mappings for a given auth-data id. Use this to link API keys to specific models and set primaries via the server’s policy.
Method Parameters
auth_id | required int
The auth-data id to update.
ai_systems_to_add | optional List[string]
Model ids to associate with this auth-data.
ai_systems_to_remove | optional List[string]
Model ids to remove from association.
Returns
UpdateAuthMappingsOnAuthDataResponseEntity
Example
result = dfl.update_auth_mappings_on_auth_data(
auth_id=123,
ai_systems_to_add=["model_key_a", "model_key_b"],
ai_systems_to_remove=["old_model_key"],
)
Notes
- For remote AI systems, the model creation flow requires providing
auth_data_idsand aprimary_auth_data_id. Do not pass plaintext API keys to model creation; the server resolves keys from your auth-data. This is reflected in the AI Systems creation methods such ascreate_openai_model,create_azure_model, etc.